

Bilkent University

Department of Computer Engineering

Senior Design Project

High-Level Design Report
Deepgame

Students
Betül Reyhan Uyanık

Mert Alp Taytak
Ömer Faruk Geredeli

Supervisor

Dr. Uğur Güdükbay

Jury Members
Prof. Dr. Özgür Ulusoy

Asst. Prof. Dr. Shervin Rahimzadeh Arashloo

Innovation Expert
Cem Çimenbiçer

May 22, 2020
This report is submitted to the Department of Computer Engineering of Bilkent University in
partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Table of Contents
1 Introduction 2

1.1 Purpose of the System 2
1.2 Design Goals 2

1.2.1 Immersion 2
1.2.2 Performance 3
1.2.3 Usability 3
1.2.4 Cost 3
1.2.5 Security 3
1.2.6 Privacy 3

1.3 Definition, Acronyms and Abbreviations 3
1.4 Overview 4

2 Current Software Architecture 5

3 Proposed System Architecture 6
3.1 Overview 6
3.2 Subsystem Decomposition 7

3.2.1 Feature Extractor 8
3.2.1.1 Presentation Layer 8
3.2.1.2 Logic Layer 8
3.2.1.3 Storage Layer 9

3.2.2 Feature Transferer 9
3.2.2.1 Interface Layer 9
3.2.2.2 Logic Layer 9

3.3 Hardware/Software Mapping 9
3.4 Persistent Data Management 10
3.5 Access Control and Security 10
3.6 Global Software Control 11
3.7 Boundary Conditions 11

3.7.1 Initialization 11
3.7.2 Termination 11
3.7.3 Failure 11

4 Subsystem Services 12
4.1 Feature Extractor 12

4.1.1 Presentation Layer 12
4.1.2 Logic Layer 12

4.1.2.1 Feature Extraction Layer 13
4.1.2.2 Data Normalization Layer 13

4.1.3 Storage Layer 14
4.2 Feature Transferer 14

4.2.1 Interface Layer 15
4.2.2 Logic Layer 15

5 New Knowledge Acquired and Learning Strategies Used 16

6 References 17

1

1 Introduction

1.1 Purpose of the System
Modern times offer people various kinds of video games through a multitude of platforms. In
some genres of games the user plays as a character. Since the appearance of the player
character is important be it for immersion or role playing purposes, games have been
offering character customization options. Some of these customization options take the form
of accessories or clothing that changes the player character superficially. Another option is
customization of character models. Some games, with the help of improving technology,
offer extensive and elaborate character creation menus. Which makes it possible to create a
visually diverse range of characters. However, customization is not limited to visuals.
Character voices are another part of the customization process. Due to its nature, human
speech is not fit for modeling and customization in the way the human body is. Many games
we have seen in the market use a limited set of recorded, generic voice lines for characters.
Some do not voice act player character’s lines at all. Perhaps, due to how expensive it gets
to offer various voices for extensive dialogue options.

We would like to develop a software tool that can be integrated into games
themselves to allow the user to put themselves, or maybe others, into the game visually and
auditorily. While there exist games with similar features, they require expensive hardware.
Using techniques developed in recent years, Deepgame will work with photographs and
audio recordings. Easily acquirable through hardware common to almost every computer
user.

1.2 Design Goals
Deepgame is a tool designed to customize gaming experience. Therefore, it has design
goals that are defined around giving players a better experience along with other universal
software concerns. Following are our design goals in no particular order and a brief
explanation for each one.

Note that Deepgame is a tool to be integrated into video games. So, our goals will

involve both Deepgame and the games that will use Deepgame in general.

1.2.1 Immersion
Immersion is defined by the quality of imitation from reality to in game and how well the
result matches the game’s art style. There is no proper metric to measure these properties.
Therefore, we will be using subjective judgement instead. One objective measure is to be
consistent within the model and have no glitches occur in the models.

2

1.2.2 Performance
Most important part of a game experience is to have sufficient performance to be able to
enjoy the game. There are two parts to performance. First is model creation and second is
running the game itself. For the first, we would like to keep model creation below ten
minutes. However, model creation is a one time event for each person to model; so, it is not
vital as long as the creation times are not absurdly long. For the second, we will aim for
frame rates of over 60 frames per second and input lag of less than 100 milliseconds to be
achievable on a mid-range computer with a dedicated GPU.

1.2.3 Usability
Usability comes in two categories: usability for players and usability for developers.

Player usability is about user experience in navigating the interface for creation and
use of models. Our target is to make it as easy and familiar as copying a file between
directories in a computer.

Developer usability is about how easy it is for game developers to integrate

Deepgame into games. We will define model formats and an API so that developers can
integrate Deepgame into their games with minimal work and alteration required on their end.

1.2.4 Cost
Cost is about the level of hardware required to run Deepgame integrated games smoothly. It
is something we want to minimize. However, we target mid-range computers with dedicated
GPUs for the computer side and common smartphones for the photographing and recording.

1.2.5 Security
Use of Deepgame requires handling biometric data of people. Therefore, it is important to
ensure data safety. We will use RSA encryption to keep sensitive data secure.

1.2.6 Privacy
As above, Deepgame involves sensitive biometric data. Our goal is to ensure personal data
does not get distributed without consent of the person. RSA encryption allows us to manage
distribution of data and additional protocols can be used to make sure data can be safely
shared and deleted as necessary in multiplayer games.

1.3 Definition, Acronyms and Abbreviations

Deepgame Integrable software tool that helps model real persons in games.

Model Digital data representing the likeness of appearance or likeness
of voice of a person.

3

Feature Appearance or voice data that belongs to a specific person.

Feature Transfer Process of creating a game model from a feature model of a
person.

Feature Extraction Process of extracting features from photographs and recording of
a person.

Target Person to be modeled.

Unity3D A game engine [2].

Plugin Code that is written to be integrable to Unity3D projects like a
library or a framework in programming languages.

1.4 Overview
Character customization in video games is an important part of the player experience.
Deepgame is a software tool that uses photographs and voice recordings of a person to
imitate their likeness in games.

We will develop Deepgame to be a two-part software. First part will be the standalone
feature transfer engine that will take photographs and recordings to create game-agnostic
models of people. Second part will be a Unity3D plugin that takes those generalized models
from the standalone software and uses them to create in-game models in video games that
use the plugin with some tweaks by the game developers. Separation of the standalone
software and the plugin will allow us to get the most performance in each part and highest
portability of models between games.

In order to demonstrate the capabilities of Deepgame, we will also develop a video

game in Unity3D with the Deepgame plugin.

4

2 Current Software Architecture

Aside from relatively archaic methods of imitation through photographs as avatars or
textures to map onto in-game models, only instance of imitation of real persons is found in
Kinect Sports Rivals [1].

Kinect Sports Rivals is a multiplayer sports game on XBOX One that utilizes the
console’s Kinect motion-sensing camera to take depth images of the target person and
create a three dimensional avatar in the game.

On the superficial level requirement of a Kinect camera is a relatively expensive
prerequisite. On a more technical level, feature transfer in Kinect Sports Rivals does not
create unique avatars but rather composes numerous subfeatures such as face shape and
hair color that best matches the target’s subfeatures to come up with a functionally
pregenerated avatar.

5

3 Proposed System Architecture

3.1 Overview
As a concept Deepgame is simple. It takes data about real life people and imitates their
likeness in video games. As a result Deepgame’s system architecture is also simple. The
real complexity in this project comes from developing the theory required to achieve good
imitation.

With Deepgame, there are two main systems in play. First is the Feature Extractor
and second is Feature Transferer. The Feature Extractor system is built to be a standalone
software whose sole job is processing biometric data into game-agnostic feature models.
The Feature Transferer system is the product of Unity3D plugin part of Deepgame that is
built into the games and configured by the game developers to take feature models from the
Feature Extractor and create in-game models. These systems are then further broken down
into subsystems. Note that there is no server involved and everything takes place in the
player’s computer; and Feature Transferer is built into the games.

6

3.2 Subsystem Decomposition

Figure 1:​ ​Feature Extractor​ Subsystem Decomposition

7

Figure 2:​ ​Feature Transferer​ Subsystem Decomposition

Deepgame runs on PC with no access to a server. Deepgame’s systems are split into two
parts: Feature Extractor and Feature Transferer. These systems are then broken down into
further subsystems. Following is a brief explanation of each subsystem component.

3.2.1 Feature Extractor
Feature Extractor is a standalone software designed to go from raw biometric data to
universally applicable feature models.

3.2.1.1 Presentation Layer
Presentation Layer is responsible for providing the user with an interface and managing the
internal logic as requested by the user. It has two further subsystems:

● Controller Layer:​ Responsible for managing the internal logic.
● View Layer:​ Responsible for providing the user interface.

3.2.1.2 Logic Layer
Logic Layer is responsible for turning raw biometric data provided by the user into universally
applicable feature models. It has two further architecturally identical, functionally different
subsystems: Visual Logic Layer and Auditory Logic Layer. These layers do the processing of
data. Such a logic layer is then further broken down into:

8

● Feature Extraction Layer: The layer where actual processing happens. Uses machine
learning techniques to do the processing.

● Data Normalization Layer: Processes raw data into manageable chunks and does
denoising and formatting in the process.

3.2.1.3 Storage Layer
Manages access to computer disk for file retrieval and file storage.

3.2.2 Feature Transferer
Feature Transferer is built into the games developed on Unity3D that uses the Deepgame
plugin for Unity3D. It is designed to fit into the game developers’ vision for the game it is
used in. Therefore, all user interface is left to the game developers and Feature Transferer
only provides an interface layer to manage access.

3.2.2.1 Interface Layer
Manages access between the game and the inner logic. It has two further subsystems:

● Provider Layer: Component of the interface that is used by the game to request the
Feature Transferer to provide a service.

● Requester Layer: Component of the interface that is used by the Feature Transferer
logic to request the game to do tasks it does not have access to such as storage
access or game data to transfer features onto.

3.2.2.2 Logic Layer
Contains feature transfer layers that take an universal feature model produced by a Feature
Extractor and transfer it onto game models provided by the game. For example, given an
auditory feature model and a sound file containing a voice line, the Auditory Feature
Transferer will use the model to produce a sound file with the voice line made to sound like it
was spoken by the person that made the feature model.

3.3 Hardware/Software Mapping
Deepgame is a two-part software tool that is designed to work with Unity3D engine. Although
Unity3D targets multiple platforms and standalone part of Deepgame can be written to run
on any platform, Deepgame requires computational power that makes it infeasible on
mobile. Therefore, we will target PC for our project. Although not part of the software itself,
Deepgame indirectly requires a camera and a microphone to provide data that can be
worked on with machine learning.

Software components of the Feature Extractor part is as follows:
● Python and TensorFlow will be used to develop machine learning related parts.
● Java will be used to develop interface and controller parts.
● Python part will have binding that will be used by the Java part to join two parts

together.

9

Software components of the Feature Transferer part is as follows:
● C# will be used to develop interface components of the plugin in Unity3D.
● Python and TensorFlow will be used to develop machine learning related parts.
● Two parts will be joined together through language bindings.

Besides the CPU, only two relevant hardware for the Deepgame itself are storage

and GPU. Both are directly accessible through language standard libraries. Following
diagrams gives a representation of the Hardware/Software Mapping.

Figure 3:​ Deployment Diagram of Feature Extractor/Transferer

3.4 Persistent Data Management
Persistent data is very important for the functioning of Deepgame. Since Deepgame deals
with imitating real people it requires data about those people’s features. However, for each
game those feature data is processed into game specific models. Considering the use case,
a database is not required and file systems provided by operating systems are enough to
store and process the data as files.

3.5 Access Control and Security
As previously mentioned, Deepgame requires no database or network access. Therefore,
access control is not required. However, data safety is important since we are dealing with
biometric data. For this purpose we will implement an optional encryption feature that uses
RSA encryption. In case a game developer wants to use Deepgame with a multiplayer
game, we will provide basic tools to enable the safe use of RSA encryption with multiple
players. However, we will leave it to the game developers to ensure total safety. Therefore, it
will be developers’ responsibility to ensure data safety in multiplayer.

10

3.6 Global Software Control
Parts of Deepgame provide asynchronous, one time services to users without network
usage. Therefore, we cannot talk about ​global software control. Everything happens in the
local.

Locally, Deepgame works on an event-driven model. When a user wants to extract or
transfer features from a person, they use the corresponding software to perform a one time
task. Here, one time task means having a process with a definitive start and an end. It is
possible to perform multiple feature work, but each requested work is a new event. Hence
the event driven model.

3.7 Boundary Conditions
Using an event-driven model of performing one time tasks, there are three boundary cases
for Deepgame: Initialization, termination and failure. Following is the discussion of those
cases. Since they are functionally similar, the term ​application will be used to cover both
Feature Extractor and Feature Transferer.

3.7.1 Initialization
Initialization is the process of starting up the application and performing a work order.
Naturally, the first prerequisite is to have the application installed. The second is to have a
storage device and a GPU. Finally, data must be provided to the application.

3.7.2 Termination
There are two cases for termination. First is for the work order to be finished. Second is for
the user to cancel the process. If the former is the case, then the final product will be shown
to the user to be evaluated. If found sufficient, then it will be saved onto the location provided
by the user. If not, then additional data and configuration will be requested and the work will
be repeated. If the latter is the case, then garbage collection will be performed and the
application will quit.

3.7.3 Failure
There are two cases for failure. First is for an error to occur. Second is to have a deadlock in
the machine learning process. We will have no uncaught exceptions in our code. Hence, if
the former is the case the user will be informed and the system will be restored to a state
where the cause of error can be fixed or the work can be cancelled. If the latter is true, it
means that improvement into given parameters is not achievable. To handle this type of
error, the user will be given tools to monitor the process so that they can cancel the work if
such a failure is happening.

11

4 Subsystem Services

This section will take brief explanations from ​3.2 Subsystem Decomposition and build up on
it with additional information such as main classes in each layer and their responsibilities.

4.1 Feature Extractor
Feature Extractor is a standalone software designed to go from raw biometric data to
universally applicable feature models.

4.1.1 Presentation Layer

Figure 4:​ Presentation Layer Diagram

Presentation Layer is responsible for providing the user with an interface and managing the
internal logic as requested by the user. It has two further subsystems:

● Controller Layer:​ Responsible for managing the internal logic.
● View Layer:​ Responsible for providing the user interface.

4.1.2 Logic Layer
Logic Layer is responsible for turning raw biometric data provided by the user into universally
applicable feature models. It has two further architecturally identical, functionally different
subsystems: Visual Logic Layer and Auditory Logic Layer. These layers do the processing of
data. We will generalize those logic layers and discuss their subsystems.

12

4.1.2.1 Feature Extraction Layer

Figure 5:​ Feature Extraction Layer Diagram

Feature Extraction Layer is responsible for taking normalized data and processing it into a
model.

● Features is a class that holds key characteristics such as face ratio, eye distance,
eyebrow shape.

● NeuralNetwork​ is a class that learns from the data to provide a model.
● MLManager​ is a class that governs the learning process.
● ExtractionManager is a class that governs the extraction process and manages

access to and from the Presentation Layer and the Data Normalization Layer.

4.1.2.2 Data Normalization Layer

Figure 6:​ Data Normalization Layer Diagram

Data Normalization Layer is responsible for taking raw data and normalizing it into a format
recognizable and workable by the Feature Extraction Layer.

● Denoiser​ processes data to remove noise.
● Formatter processes data to format it to fit into parameters given such as resizing the

image.
● Normalizer processes data into workable chunks such as dividing the recording of a

sentence into sound files of words.
● NormalizationManager​ uses the classes given above to normalize the data it is given.

13

4.1.3 Storage Layer

Figure 7:​ Storage Layer Diagram

Manages access to computer disk for file retrieval and file storage, handles encryption and
decryption. Also contains file formats used to store raw and processed data.

4.2 Feature Transferer
Feature Transferer is built into the games developed on Unity3D that uses the Deepgame
plugin for Unity3D. It is designed to fit into the game developers’ vision for the game it is
used in. Therefore, all user interface is left to the game developers and Feature Transferer
only provides an interface layer to manage access.

14

4.2.1 Interface Layer

Figure 8: ​Interface Layer Diagram

Manages access between the game and the inner logic. It has two further subsystems:

● Provider Layer: Component of the interface that is used by the game to request the
Feature Transferer to provide a service.

● Requester Layer: Component of the interface that is used by the Feature Transferer
logic to request the game to do tasks it does not have access to such as storage
access or game data to transfer features onto.

4.2.2 Logic Layer

Figure 9:​ Generalized Feature Transfer Layer

Contains feature transfer layers that take an universal feature model produced by a Feature
Extractor and transfer it onto game models provided by the game. For example, given an
auditory feature model and a sound file containing a voice line, the Auditory Feature
Transferer will use the model to produce a sound file with the voice line made to sound like it
was spoken by the person that made the feature model.

● Models​ is a class that holds the format of the model product by the Feature Extractor.
● NeuralNetwork is a class that learns from the feature model to provide a game

model.
● MLManager​ is a class that governs the learning process.
● TransferManager is a class that governs the feature transfer process and manages

access to and from the interface.

15

5 New Knowledge Acquired and Learning
Strategies Used

As we have mentioned in the Project Analysis Report, we are planning to learn about new
fields, algorithms and technologies in order to have a working project. For the visual and
auditory feature transfer technology part of the Deepgame we studied deepfake algorithms
for both visuals and sounds. We researched and learned from academic articles and other
written sources and understood the basic logic. We have researched what is neural network
and its sub branches, and how it is used in applications. For the second part, a video game
integrated with Deepgame, we researched the features required for a good game and
learned the logic of creating a game. We researched the game engines and decided on the
game engine we will use. We learned how to use the game engine we decided on. We are
planning to go over different algorithms and various applications of these so that we can
come up with our own. Main challenge of the project is coming up with an algorithm which is
designed entirely by us, and is capable of matching the game's art style. Our main source for
these algorithms were GitHub and various articles. Since the concept of deepfake is
relatively new, applications and algorithms of the technology are scarce. In the summer, we
are planning to study the implementation of our source code and apply the techniques that
we learned on our project.

16

6 References

[1] X. W. Staff, “Creating a Champion in Kinect Sports Rivals,” Xbox Wire, 20-Oct-2015.

[Online]. Available: https://news.xbox.com/en-us/2014/04/01/games-ksr-developer-qa/.
[Accessed: 23-Feb-2020].

[2] “Unity Asset Store - The Best Assets for Game Making,” Unity Asset Store - The Best
Assets for Game Making. [Online]. Available: https://assetstore.unity.com/. [Accessed:
23-Mar-2020].

17

